
François Chollet and Matthew WatsonDeep Learning with Python, 3rd Edition
1.
Chapter 1. What is deep learning
2.
Chapter 2. The mathematical building blocks of neural networks
3.
Chapter 3. Introduction to TensorFlow, PyTorch, JAX, and Keras
4.
Chapter 4. Classification and regression
5.
Chapter 5. Fundamentals of machine learning
6.
Chapter 6. The universal workflow of machine learning
7.
Chapter 7. A deep dive on Keras
8.
Chapter 8. Image classification
9.
Chapter 9. ConvNet architecture patterns
10.
Chapter 10. Interpreting what ConvNets learn
11.
Chapter 11. Image segmentation
12.
Chapter 12. Object detection
13.
Chapter 13. Timeseries forecasting
14.
Chapter 14. Text classification
15.
Chapter 15. Language models and the Transformer
16.
Chapter 16. Text generation
17.
Chapter 17. Image generation
18.
Chapter 18. Best practices for the real world
19.
Chapter 19. The future of AI
20.
Chapter 20. Conclusions



